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1. Introduction

Peripheral neuropathy causes pain and numbness in your hands and feet, usually described

as tingling or burning. While the loss of sensation, is often compared to the feeling of wearing

a thin stocking or glove. Peripheral neuropathy can result from such problems as traumatic

injuries, infections, metabolic problems and exposure to toxins. One of the most common

causes of the disorder is diabetes.

In many cases, peripheral neuropathy symptoms improve with time. Medications, initially

designed to treat other conditions, are often used to reduce the painful symptoms of peripheral

neuropathy.

Peripheral neuropathy is a progressive deterioration of peripheral sensory nerves in the distal

extremities. This disease affects more than 20 Million Americans. Most commonly, peripheral

neuropathy begins in the longest nerves. Specific symptoms vary, depending on which types

of nerves are affected, but symptoms may include:

• Numbness and tingling in your feet or hands, which may spread to your arms and legs,

• Burning or a sharp, jabbing pain,

• Extreme sensitivity to touch,

• Lack of coordination,

• Muscle weakness or paralysis if motor nerves are affected

• Bowel or bladder problems if autonomic nerves are affected.

The first goal of treatment is to manage the condition causing your neuropathy. A number of

factors can cause neuropathies. These factors include:

• Trauma or pressure on the nerve. Nerve pressure can result from using a cast or

crutches, spending a long time in an unnatural position, repeating a motion many

times or having a tumor or abnormal bone growth.

• Diabetes. When damage occurs to several nerves, the cause frequently is diabetes. At

least half of all people with diabetes develop some type of neuropathy.

• Vitamin deficiencies. B-vitamins are particularly important to nerve health.
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• Alcoholism. Many alcoholics develop peripheral neuropathy because they have poor

dietary habits, leading to vitamin deficiencies.

• Autoimmune diseases.

• Other diseases. Kidney disease, liver disease and an underactive thyroid (hypothy-

roidism) also can cause peripheral neuropathy.

• Exposure to poisons. These may include some toxic substances and certain medications

If the underlying cause is corrected, the neuropathy often improves on its own. The second

goal of treatment is to relieve the painful symptoms.

Brad Manor, the leader of this Kinesiology project, hopes to pinpoint the problem areas

associated with Peripheral Neuropathy by studying human gait of both affected and non-

affected patients. Learning the exact parts of the body which are malfunctioning could lead

to improved ways of approaching and helping to treat peripheral neuropathy. Creating an

accurate way to measure stability in human gait could lead to possible prevention of future

accidents.

Data is collected in the lab from volunteers. Every person who participates is first fitted with

several reflective sensors placed on their toes, ankle, knee, hip, wrist, elbow, shoulder, and

forehead. Patients are then asked to walk on a treadmill, surrounded by 8 infrared cameras for

approximately 80 seconds. Cameras capture 60 images/second and collect 4900 data points.

Multiple cameras are used to reduce the error caused by a patient’s arm blocking the sensor

at the hip.

2. Time Series and Reconstruction

A time series is a set of consecutive data points that are taken over a specific, uniform

interval of time. For this project, the time series will be a sequence of positions of the

hip, ankle, and knee taken from a subject in the 1-dimensional space during the Kinesiology

Human Gait experiment. With this time series, the Mathematics and Kinesiology department

are attempting to locate a stable walking pattern by calculating and analyzing the Lyabunov

exponent. With the study of chaotic discrete dynamical systems and attractors, the project
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will map a stable walking pattern to attractor, where as unstable walking patterns will deviate

(repel) from a general attractor and therefore produce and large, positive Lyabunov exponent.

In order to begin analyzing a time series Lyabunov exponent, the time series must be sent

through a reconstruction process to properly capture the dynamics of the system from the

1-dimensional times series into an n-dimensional attractor. This project uses the method

of delays, one of the most common reconstruction processes, to assemble the n-dimensional

attractor. The method of delays is driven by a chosen embedding dimension of n, which

will represent the number of state variables of the time series attractor. This method delays

reconstruction begins with a time series X such that:

X = {x1, x2, ...}

we define new vectors Xi such that:

X =
{
xi, xi+j, ..., xi+(n−1)j

}
where j is the reconstruction lag and n is the embedding dimension. The reconstruction

lag refers to the number of data points between each vector Xi that stretches the attractor

by forcing the reconstruction to choose points later in the series. The reconstruction lag is

calculated using the Rosenstein Lyapunov exponent reconstruction method. This method

requires that the embedding dimension (determined from previous trials) be entered in as a

parameter for the calculation. The GUI and plots for this project have used an embedding

dimension and of 5. The reconstruction creates the vector X̄ such that:

X̄ = {X1, X2, ..., XM}

This reconstructed vector creates the attractor that will proceed into the nearest neighbor

analysis for the trajectory.
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3. Nearest Neighbors and Calculating dj(i)

The reconstructed vector forms an attractor of one trajectory and finitely many cycles.

To continue the calculation to the Lyapunov exponent, the distances between the nearest

points in the cycles must be found in order determine the rate of separation of the cycles,

the Lyapunov exponent. This process is known as determining the nearest neighbor. The

distance dj(0) is as follows:

dj(0) = min||Xj −Xĵ||

for a reference point Xj in the reconstructed vector provided |j − ĵ| > mean period. The

mean period is a user-defined constant that makes sure the distances separate in a sufficient

number of data point. dj(1) is calculated as

dj(1) = ||X(j+1) −X(ĵ+1)||

and this continues to dj(i) in the form:

dj(i) = ||Xn − j −X(n−ĵ)||

The nearest neighbor algorithm is used with each vector in X̄ as a reference point.

4. Curve Fitting and the Lyapunov Exponent

The Lyapunov exponent is the rate the nearest neighbor differences separate. Therefore, in

order to calculate the Lyapunov exponent the slope of the average distances must be calculated

with a respectable goodness of faith fitting. Over the course of this experiment the Lyapunov

exponent has been calculated using the linear model and finding a short term and long term

Lyapunov exponent for each patient. In addition, this semester the project has fitted the curve

to double exponential model explored by other researchers. The algorithm to both models is

explained below.
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Linear Model

For each i, the average of d(i) is taken as follows:

dj(i) = avg[d1(i), d2(i), ..., dn(i)]

Graphing the dj(i)‘s on the Cartesian plane can be approximated by the function:

dj(i) > Cje
λ1(i∗∆(t))

such that Cj is the initial separation and λ1 is the Lyapunov exponent. To make this fit the

linear model the natural logarithm is used as follows:

ln[dj(i)] > ln[Cj] + λ1(i∆(t))

where the Lyapunov exponent is the slope of the linear function. This project produces a

linear fit for both a short term and a long term Lyapunov exponent. The short term Lyapunov

exponent is referring to the data point of only the first stride and the long term Lyapnuov

exponent refers to data points between the fourth and the tenth stride.

Double Exponential Model

The double exponential model follows the same path as the linear model to the average of the

dj(i)‘s. The methods in the fact that there is no need to compute the natural logarithm of

the dj(i)‘s since the plot will be fitted to an exponential model.

dj(i) > A−Bse
−t
τs −BLe

−t
τL

where τl > τs and A is upper limit of the data points. Although this semester the prior fit

was applied, the actual significance of Bs, BL, τL, and τs have not been determined. Instead,

a graphical user interface that will make analyzing the variables of the fitting was pushed

further into production.
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5. Progress of the GUI

The GUI developed by previous semesters was updated for usability and additional options.

Users can now follow a system that is broken into segments, providing unique messages and

progress bars as the fit their data to the linear Lyapunov model. Options for the single and

double exponential have been added and Matlab code and functions enabling the data to be

plotted using the exponential models have achieved, but implementing the code to apply the

exponential fitting has not been achieved. To implement the code for the exponential fitting,

it is suggested to first use the curve fitting toolbox to generate the M-code needed for the

fitting and then alter the M-code in order for it to easily be placed into the options already

created in the GUI.

6. Reverse Dynamics

In general, if you use embedding dimension equal to m, there will be m Lyapunov expo-

nents, just like a m-by-m linear system has m eigenvalues, that are not necessarily distinct.

When using embedding theory to build chaotic attractors in a reconstruction space, extra

”spurious” Lyapunov exponents arise that are not Lyapunov exponents of the original sys-

tem. By computing the exponents in reverse dynamics we are trying to identify potential

spurious exponents. In the way we computed reverse dynamics, we are expecting to have the

same exponents under normal and reverse dynamics, which is what the results show in Table

1 on the following page.

7. Conclusion

During the course of the semester, updates to the graphical user interface (GUI) and meth-

ods to updating both the single and double exponential, accompanied with a study on reverse

dynamics was established. Although implementing the single and double exponential models

in the GUI were not completed this could be added as a further update to the GUI.
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Table 1. Reverse Dynamics

Book Normal/Reverse Hip Knee Ankle

Short term 0.0311652 0.0345363 0.0241968
Normal

Long term 0.00133618 0.0015417 0.00102537

1 Short term 0.0305798 0.0352694 0.0276853
Reverse

Long term 0.00169744 0.00172776 0.000978649

Short term 0.0319671 0.0338487 0.0278014
Normal

Long term 0.00125689 0.00182689 0.00100679

2 Short term 0.0331502 0.0349964 0.0268293
Reverse

Long term 0.000871532 0.00170239 0.00132908

Short term 0.0233028 0.032567 0.0253493
Normal

Long term 0.002046 0.00206504 0.00158643

3 Short term 0.0238859 0.0338533 0.0272519
Reverse

Long term 0.0017516 0.00178766 0.00152506

Short term 0.0321058 0.0366798 0.0203069
Normal

Long term 0.0012862 0.00170522 0.00157981

4 Short term 0.0312252 0.0343921 0.0185343
Reverse

Long term 0.00120572 0.00210367 0.00156514

Short term 0.0244825 0.0316393 0.0241988
Normal

Long term 0.00181546 0.00167798 0.00108574

5 Short term 0.0238859 0.0338533 0.0272519
Reverse

Long term 0.0017516 0.00178766 0.00152506

Short term 0.0233028 0.032567 0.0253493
Normal

Long term 0.002046 0.00206504 0.00158643

6 Short term 0.0238859 0.0338533 0.0272519
Reverse

Long term 0.0017516 0.00178766 0.00152506

Short term 0.0400742 0.0413905 0.0300532
Normal

Long term 0.000551648 0.000777868 0.000470957

7 Short term 0.0380803 0.0417392 0.0315075
Reverse

Long term 0.000945089 0.000753988 0.000265903

Short term 0.0283466 0.0316259 0.0266123
Normal

Long term 0.000790844 0.00108036 0.000792237

8
Short term 0.027781 0.0319224 0.0270148

Reverse Long term 0.00101281 0.000977129 0.00087323


